Source
Volume
22Issue
16DOI
10.3390/ijms22168993Article Number
8993Published
AUG 2021Indexed
2021-09-03Document Type
ArticleAbstract
The prediction of drug-target affinity (DTA) is a crucial step for drug screening and discovery. In this study, a new graph-based prediction model named SAG-DTA (self-attention graph drug-target affinity) was implemented. Unlike previous graph-based methods, the proposed model utilized self-attention mechanisms on the drug molecular graph to obtain effective representations of drugs for DTA prediction. Features of each atom node in the molecular graph were weighted using an attention score before being aggregated as molecule representation. Various self-attention scoring methods were compared in this study. In addition, two pooing architectures, namely, global and hierarchical architectures, were presented and evaluated on benchmark datasets. Results of comparative experiments on both regression and binary classification tasks showed that SAG-DTA was superior to previous sequence-based or other graph-based methods and exhibited good generalization ability.